Chem. Ber. 102, 1363-1378 (1969)

Hans Bock, Manfred Schnöller¹⁾ und Heindirk tom Dieck

Untersuchungen an der P=N-Doppelbindung, IX²⁾

Synthesen und Schwingungsspektren ¹⁵N- und D-markierter *P*-Triphenyl-*N*-methylen-phosphaketazine

Aus dem Institut für Anorganische Chemie der Universität München

(Eingegangen am 18. September 1968)

Für vergleichende Untersuchungen an π -Elektronensystemen mit P=N- und C=N-Doppelbindungen wurden die Infrarotspektren von *P*-Triphenyl-*N*-methylen-phosphaketazinen (C₆X₅)₃P=N^{α}-N^{β}=CY₂ (X = Y = H) sowie von acht verschiedenen ¹⁵N-markierten, kern- und methylendeuterierten Derivaten (N^{α}, N^{β} = ¹⁵N; X, Y = D) zugeordnet. Die charakteristischen Valenzschwingungen des unmarkierten P=N-N=C-Systems liegen bei 1549 (v₁ ~ v_{C=N}), 1053 (v₂ ~ v_{P=N}) und 847/cm (v₃ ~ v_{N-N}).

Die P=N-Valenzschwingung von Phosphinimin-Derivaten $X_3P=N-Z$ ($\nu_{P=N} \sim 1140 - 1380/\text{cm}$)³⁾ wird insbesondere von den Stickstoff-Substituenten Z in einer Weise beeinflußt, die ihren Gruppenfrequenzcharakter in Frage stellt (Tab. 1).

Neben Masseneffekten treten vor allem Schwingungskopplungen [a) und b), Tab. 1] auf; induktiv ziehende Phosphorsubstituenten X verstärken offenbar die $(P \leftarrow N)_{\pi}$ -Wechselwirkung [c), Tab. 1]³⁾.

Verbindungst	ур	Substituent	ν _{P=N} [cm ⁻¹]
a)	(C ₆ H ₅) ₃ P=N-	$Z' = NO_2$ $= NR_2$	1373 1328
b)	(C ₆ H ₅) ₃ P=N-C	$\begin{array}{l} Z'=C_6H_5\\ =OC_2H_5 \end{array}$	1337 1274
c)	X3P=N-SO2-C6H4-CH3-(<i>p</i>)	$\begin{array}{l} X &= Cl \\ &= C_6 H_5 \end{array}$	1199 1147

Tab. 1	. P:	=N·	·Va	lenzschwi	ngungen	von	Phosphir	nimin	-Der	ivaten	X_{3}	?=♪	¥	Z
--------	------	-----	-----	-----------	---------	-----	----------	-------	------	--------	---------	-----	---	---

In den Phosphaketazinen $X_3P=N-N=CZ_2$ ist die Beeinflussung der P=N-Bindung durch Kopplung mit der C=N-Gruppe nicht ohne weiteres zu überblicken. $Für einen intramolekularen Ladungstransfer <math>\mathbf{a} \rightarrow \mathbf{b}$ scheinen die mit zunehmender Stabilisierungsmöglichkeit der negativen Formalladung langwellig verschobenen $\pi \rightarrow \pi^*$ -Absorptionen⁴⁾ zu sprechen (c, d).

- ²⁾ VIII. Mitteil.: H. Bock und M. Schnöller, Chem. Ber. 102, 38 (1969).
- 3) W. Wiegräbe und H. Bock, Chem. Ber. 101, 1414 (1968).
- 4) H. Bock und M. Schnöller, unveröffentlicht.

¹⁾ Teil der Dissertat. M. Schnöller, Univ. München 1968.

 $a \stackrel{>}{\rightarrow} P = \overline{N} - \underline{N} = C \langle b \stackrel{\otimes}{\rightarrow} P - \overline{N} = \underline{N} - \underline{O} \rangle \langle c \rangle \langle C_{6}H_{5}\rangle_{3}P = N - N = CH_{2} \rangle \langle d \rangle \langle C_{6}H_{5}\rangle_{3}P = N - N = \langle v_{m} = 35000 \text{ cm}^{-1}(\text{sh}) \rangle \langle v_{m} = 27900 \text{ cm}^{-1} \rangle \langle c_{m} = 16000 \rangle \rangle \langle c_{m} = 16000 \rangle \rangle$

Eine eindeutige Zuordnung der P-N-N-C-Valenzschwingungen im *P*-Triphenyl-*N*-methylen-phosphaketazin c durch ¹⁵N-Substitution, Deuterierung der Methylengruppe sowie der Phenylkerne sollte zunächst Informationen über die elektronische Wechselwirkung der P=N- und C=N-Teilchromophore in diesem P=N-N=C-System liefern.

A. Synthese der ¹⁵N- und D-markierten P-Triphenyl-N-methylen-phosphaketazine

Zur Synthese der *P*-Triphenyl-*N*-methylen-phosphaketazine 6a-6i wurde die auf *Staudinger* und *Meyer*⁵ zurückgehende Umsetzung von Triphenylphosphinen mit Diazomethan-Derivaten⁶ benutzt. Isotop substituierte Diazomethane⁷ lassen sich im Mikromaßstab mit Ausbeuten bis zu 80% ausgehend von den *N*-Methyl-*p*-toluol-

⁵⁾ H. Staudinger und J. Meyer, Helv. chim. Acta 2, 619, 635 (1919).

⁶⁾ G. Wittig und W. Haag, Chem. Ber. 88, 1654 (1955).

⁷⁾ Vgl. hierzu: K. Clusius und F. Endtinger, Helv. chim. Acta 41, 1823 (1958); C. B. Moore und G. C. Pimentel, J. chem. Physics 40, 329 und 342 (1964).

sulfonsäureamiden 1-3 über die aus diesen erhältlichen ¹⁵N-markierten und/oder deuterierten N-Nitroso-N-methyl-toluolsulfonsäureamide 4 gewinnen.

Um 8-15 mg der isotop substituierten Diazomethane 5 durch Hydrolyse oder Deuterolyse aus 4 darzustellen und nach (4) anschließend mit Triphenylphosphin umzusetzen, bewährten sich folgende Mikroapparaturen (Abbild. 1), die zur Vermeidung von Zersetzungsverlusten keine rauhen Stellen aufweisen dürfen.

Abbild. 1. Mikroapparaturen zur Darstellung und Umsetzung kleiner Mengen Diazomethan

Die ätherische Lösung (A) des N-Nitroso-N-methyl-p-toluolsulfonsäureamids 4 wird zur Lösung B von Kaliumhydroxid in Wasser/Äther/Carbitol getropft und nach 1-2 Min. durch Erhitzen mit Warmluft das entwickelte Diazomethan 5 zusammen mit Äther in die auf -20° gekühlte Vorlage übergetrieben. Mit der über einem Kaliumhydroxidplätzchen getrockneten ätherischen Lösung (C) löst man unter Stickstoffspülung die äquivalente Menge Triphenylphosphin in D. Von eventuell gebildetem, flockigem Niederschlag wird nach E dekantiert, wo das gelöste Methylen-phosphaketazin 6 auskristallisiert. Die Ausbeute läßt sich durch teilweises Abkondensieren des Äthers nach D steigern.

$\begin{array}{c} Ts \\ N^{\beta} - CY_{3} \end{array} \xrightarrow{KOY/Y_{2}O} \end{array}$	$N^{\alpha}N^{\beta}=CY_2$ $\xrightarrow{(C_6X_5)_3P}$	• (C	₆ X ₅)	₃P≏N'	² -Ν ^β =0	CY2	(4)
4	5			6a-	i		
		1	x	N^{α}	N ^β	Y	
		6a	н	¹⁴ N	¹⁴ N	н	
		b	D	14 _N	$^{14}\mathrm{N}$	н	
		c	н	$^{15}\mathrm{N}$	^{14}N	Н	
		d	D	$^{15}\mathrm{N}$	^{14}N	Н	
		е	н	$^{14}\mathrm{N}$	¹⁴ N	D	
		f	D	^{14}N	^{14}N	D	
		g	D	$^{15}\mathrm{N}$	^{14}N	D	
		ĥ	н	^{14}N	$^{15}\mathrm{N}$	Н	
		i	н	$^{15}\mathrm{N}$	$^{15}\mathrm{N}$	Н	

B. Zuordnung der Schwingungsspektren

Das *P*-Triphenyl-*N*-methylen-phosphaketazin **6a** oder dessen isotop substituierte Analoga bestehen aus 39 Atomen und enthalten bei Vernachlässigung der Phosphorsubstituenten und planarer Anordnung als einziges Symmetrieelement die Molekülebene (C_s). Damit sind alle 111 Normalschwingungen infrarotaktiv.

In Abbild. 2 sind die Infrarotspektren des unmarkierten Standards **6a** sowie der α - und/oder β -15N-substituierten Verbindungen **6c**, **h**, **i** im Bereich von 1600-800/cm wiedergegeben.

Der Diskussion der Schwingungsspektren wird eine *s-trans*-Konformation des P=N-N=C-Moleküls zugrundegelegt, da die *s-cis*-Anordnung infolge sterischer Wechselwirkung eines Methylenprotons mit den *P*-Phenylsubstituenten benachteiligt ist.

Eine Zuordnung der IR-Absorptionen des komplizierten Moleküls erscheint ohne Bezugnahme auf bekannte Schwingungen einzelner Molekülteile unmöglich. Das Phosphaketazin wird deshalb zweckmäßigerweise in solche Gruppen zerlegt, deren Schwingungen als voneinander weitgehend unabhängig angesehen werden können. Eine formale Unterteilung des Moleküls am Phosphor⁸⁾ bietet sich dabei aus zweierlei Gründen an: Die IR-Spektren von *P*-Triphenylderivaten⁸⁻¹²⁾ sowie von monosubstituierten Benzolen¹³⁻¹⁵⁾ sind bereits eingehend untersucht worden. Zudem sollten die Kopplungen zwischen den verbleibenden Molekülteilen A und B wegen der relativ größen Masse des Phosphors und dementsprechend kleinen Schwingungsamplituden näherungsweise vernachlässigbar sein.

Die Rechtfertigung für diese Unterteilung kann durch die Ergebnisse der Isotopenmarkierung erbracht werden. Keine Schwingung des Molekülteils A wird durch ¹⁵N-Substitution langwellig verschoben, es sei denn durch zufältige Resonanzeffekte. Umgekehrt führt die Perdeuterierung aller Phenylkerne (**6b**) zu einer Verschiebung der "P=N"-Frequenz von nur 18/cm.

 $\sum_{P=N}^{N=C} \sum_{Y}^{Y} \mathbf{B}$

In den Tabellen 2 und 3 sind für die neun Phosphaketazine **6a**–**6i** alle im Bereich von 4000–400/cm beobachteten Infrarotabsorptionen mit ihren relativen Intensitäten angegeben. Dabei sind in Tab. 2 dem Standard **6a** die drei verschiedenen ¹⁵N-markierten Verbindungen **6c**, **6h** und **6i** (vgl. Abbild. 2) sowie das Deuteromethylen-Derivat **6e** gegenübergestellt. In Tab. 3 werden die Frequenzen von **6a** mit jenen der Deuterophenyl-Derivate **6b**, **6d**, **6f** und **6g** verglichen. Alle in den Tabellen enthaltenen Δv -Werte beziehen sich auf das unmarkierte *P*-Triphenyl-*N*-methylen-phosphaketazin **6a**. Unter der Spalte "Zuordnung" ist zur besseren Übersicht für Schwingungen aus dem Triphenyl-Teil A jeweils eine andere Bezeichnungsweise (ω_i) als für den Molekülteil **B** (ν_i , ν'_i) benutzt worden.

 $\begin{array}{c} C_{6}X_{5}\\ C_{6}X_{5} \end{array} P = A \\ C_{n}X_{c} \end{array}$

⁸⁾ W. Wiegräbe, H. Bock und W. Lüttke, Chem. Ber. 99, 3737 (1966).

⁹⁾ D. H. Whiffen, J. chem. Soc. [London] 1956, 1350.

¹⁰⁾ E. Steger und K. Stopperka, Chem. Ber. 94, 3023 (1961).

¹¹⁾ G. B. Deakon, R. A. Jones und P. E. Rogasch, Austral. J. Chem. 16, 362 und 499 (1963).

¹²⁾ J. Goubeau und G. Wenzel, Z. physik. Chem. (N. F.) 45, 31 (1965).

¹³⁾ Dissertat. G. Nonnenmacher, Univ. Freiburg i. Br. 1961.

¹⁴⁾ E. W. Schmidt, J. Brandmüller und G. Nonnenmacher, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 64, 726 (1960).

¹⁵⁾ J. R. Durig und C. W. Sink, Spectrochim. Acta 24 A, 575 (1968).

В			gun	B	\mathbf{A}_1	\mathbf{B}_1		$CD_2)$			$\mathbf{A}_{\mathbf{l}}$		A1	a	la	ring Schw.	B1	\mathbf{B}_1		lschw.	Aı	\mathbf{B}_1	A1	(()			B ₁
sphaketazin-Teil			Zuordn	ω15 = ν(CH)	$\omega_2 = \gamma(CH)$	$\omega_{16} = v(CH)$		$v'_4 = v_{as}(CH_2;$	$v'_{i} = v_{e} (CD_{e})$	2 V/6	$\omega_4 = \omega$	$v'_2 = v_{\rm C} = N$	0.5 ≠ 0.		m 18 = m	$v'_3 = CH_2$ -Scisso	0 = 010	$\omega_{20} = \delta(CH)$		$v'_5 = CH_2$ -Pende	$\omega_7 = \delta(CH)$	$\omega_{21} = \delta(CH)$	$\omega_6 = \omega_X$	(P-Phenyl)			ω ₂₂ = δ(CH)
n im Pho	ntensität)		$-N = CD_2$ $\Delta v CD_2$									-38		~	~	379				- 183			_		 +	ī	
it der		6 e	-N=C	s	s	s	Ś	s	s s	,	Ħ	Ħ	8	Sch	st	E	ss	в	SS	s	둼	E	sst	Sch	sst	Sch	
ds 6a m Si	1 cm ⁻¹ ; 1		(C ₆ H ₅) ₃ I	3062	3032	2970	2920	2276	2160		1582	1121	1477	1434	1429	1004	1330	1304	1269	106	1179	1154	1117	1107	1101	1078	1058
es Standar c, 6e, 6h, 6	en auf 6a ir		-15N=CH2 Δν15Να,β									- 19				-11											
ch de sen 6.	ezog	6 i	-15N	s	s			s		s	E	£	Ħ	Sch	st	8	SS	E	ss	Sch	٤	s	sst	sst	sst	SS	Sch
: Verglei erbindung	ung und b		(C ₆ H ₅) ₃ P -	3062	3032			2881		1800	1582	1530	1477	1434	1429	1372	1330	1304	1269	1184	1179	1154	1117	1108	1100	1079	1063
$P = N^{\alpha} - N^{\beta} = CY_2$ r D-markierten Ve	egebenen Markier	6 c	$_{3}P = ^{15}N - N = CH_{2}$ I $\Delta v^{15}N^{\alpha}$	ss	2 s			s J		s (a m	8	8	4 Sch	st st	E E) ss	E +	SS (l Sch	ш	s	/ sst	sst sst) sst	Sch	s Sch
(C ₆ X ₅) ₃ I 5N- oder	der ange		(C ₆ H ₅)	3062	3032			2881		1800	1582	1549	1477	1434	1429	1380	133(1302	1269	1184	1179	1154	1117	1108	1100	1079	1063
Systems 1	∆v infolge		N = CH ₂ Δνι5Νβ									- 19				- 11										- 3	
des	1-1; /	6 ћ	N-15	s	s			s		s	E	ш	ш	Sch	st	ш	SS	E	SS	Sch	E	ŝ	sst	sst	sst	Sch	Sch
orptionen	(v in cn		$(C_6H_5)_3P = v$	3062	3032			2881		1800	1582	1530	1477	1434	1429	1372	1330	1304	1269	1184	1179	1154	1117	1108	1100	1076	1063
Tab. 2. IR-Ab		6 a	$_{3}P = N - N = CH_{2}$	062 ss	032 _. s			881 s		800 s	582 m	549 т	477 m	434 Sch	429 st	383 m	330 ss	304 т	269 ss	184 Sch	179 m	154 s	117 sst	108 sst	100 sst	079 ss	063 Sch
			(C ₆ H ₅)) .	Ř			3		31	1:	H	1	٦٢	1.	1	1	Ц	1	1	1	1	1.	1	1	1(11

î	Aı	A1	$\mathbf{B_2^B}$			\mathbf{A}_2					2	2	Å,	,	4	1 2		Вı				\mathbf{B}_2		A,	
(Verunreinigung m. ¹⁴ vP=N	$\omega_8 = \delta(CH)$	0 = 0	$\omega_{25} = \gamma(CH)$ $\omega_{26} = \gamma(CH)$		$v'_6 = CH_2$ -Kippschw	$\omega_{13} = \gamma(CH)$	N – N					$\begin{cases} \omega_{27} = \gamma(C\pi) \end{cases}$	0.00 = 0	(P-Phenyl (2)) (2) (2)	-	$\int \omega_{28} = 1$		$\omega_{23} = \omega$	8PNN			$\omega_{29} = \gamma_x, \Gamma_x$		$\omega_{11} = \omega_{\mathbf{X}}$	
-41					- 171		- 48				ć	-		7		ı			x 	-5					
st	Sch		Sch		Sch	s	Ē	s	s s		Sch	st	st	st		st		ε	sst	Sch	sst	ε		s	
1012	1022	993	972 930		729 866	853	661	831	822		754	745	725	715		693		614	548	520	519	467		442	
-24	- 10						- 16										-		-3				- 3		Ľ,
ss sst	sst	st	Sch ss	SS	sst	E	st			Sch	Sch	st	st	st	Sch	st	Sch	E	sst	Sch	sst	s	Sch	s	Schulte
1049 1029	1012	993	972 930	920	006	853	831			761	754	746	725	716	700	693	680	614	553	525	519	467	459	442	ih, Sch =
-25	-7						-10										-1		-2				-1		sehr schwag
ss sst	sst	st	Sch	SS	sst	B	st			Sch	st	st	st	st	Sch	st	Sch	E	sst	Sch	sst	s	Sch	s	ch, ss -
1053 1028	1015	993	972 930	920	106	853	837			761	754	746	725	716	700	693	680	614	554	525	519	467	461	442	- schwae
4-					ī		-6												7-7				2		mittelstark, s
ss sst	ε	st	Sch ss	SS	sst	Ε	st			Sch	st	st	st	st	Sch	st	Sch	E	sst	Sch	sst	s	Sch	s	E,
1053 1049	1022	993	972 930	920	106	853	841			761	754	746	725	716	700	693	681	614	554	525	519	467	460	442	t – stark
1053 sst	1022 m	993 st	972 Sch		901 sst	853 m	847 st			761 Sch	754 st	746 st	725 st	716 st	700 Sch	693 st	681 Sch	614 m	556 sst	525 Sch	519 sst	467 s	462 Sch	442 s	itäten: sst = sehr stark, s
																									Intens

																	~						
			ng		8	Ā	B,		D2)	2)		٩ı	B		A1	ä	2	H, H	B	B	CH_2)	A1	B
phenyl-Teil A	I — Intensität)		Zuordnu		$\omega_{15} = v(CH; CD)$	$\omega_2 = v(CH; CD)$	$\omega_{16} = \sqrt{(CH; CD)}$		$v'_4 = v_{as}(CH_2; CI)$	$v'_1 = v_s(CH_2; CD)$	$2v'_6 = 1802$	$\omega_4 = \omega$	$\omega_{17} = \omega$	$v'_2 = v_C = N$	ω ₅ = ω		m 81m	$v'_3 \xrightarrow{h} N = C'$	$\omega_{19} = \omega$	$\omega_{20} = \delta(CH; CD)$	v's (Pendelschwing.	$\omega_7 = (CH; CD)$	$\omega_{21} = (CH)$
en im Trij	n cm ⁻¹ ;		$-N = CD_2$	ΔνιεΝα										- 38		~	~				- 196		
nit de	f 6a i	6g	=15N	I		SS	SS	SS		SS		Sch		Sch		Sch	sst	Sch		SS	ss	SS	Sch
ards 6a r	ogen aul		(C ₆ D ₅) ₃ P	~		2255	2235	2920		2125		1542		1111		1305	1301	1004		1033	868	868	1084
n des Stand 6f und 6g	ierung, bez		$-N = CD_2$	$\Delta v CD_2$										- 38							- 196		
gleich, 6d, 6	Mark	6f	$^{3}P = N$	I	в	Sch	Sch	s	Sch s	s		E	E	m	SS	Sch	sst	Sch		s	s	s	st
:Y ₂ : Ver ngen 6b	ebenen]		(C ₆ D ₅)	~	2270	2255	2243	2920	2276 2162	2130		1542	1529	1511	1337	1305	1301	1004		1039	868	868	1083
N ^a N ^B C en Verbindu	d der angeg		u = CH₂	$\Delta v^{15} N^{\alpha}$																	-3		
³ P=	un u	5 d	5N – N	I		SS	SS	s	SS			E		Sch		Sch	sst	E			Sch	s	
ms (C ₆ X ₅) perdeute	Substitutio		$(C_6D_5)_3P=1$	7		2255	2235	2920	2876			1542		1549		1305	1301	1383			1181	868	
Syste	cero-S		H ₂																		ĩ		
n des	· Deu		Z=C	I		S .S			Sch			Sch		E		Sch	sst	Ε			Sch	Sch	Sch
R-Absorptione	Δv infolge deı	6 b	$(C_6D_5)_3P = N -$	>		2255			2876			1542		1549		1305	1301	1383			1181	868	1084
Tab. 3. 1	(v in cm ⁻¹ ;	6a	$-N = CH_2$	1	ss	s			s		s	E		E	e E	Sch	sst	E	ss	E S	Sch	E	s
			$(C_6H_5)_3P = N$	>	3062	3030			2881		1800	1582		1549	1477	1434	1429	1383	1330	1304 1269	1184	1179	1154

1370

Α,	Ī		B		<u>۰</u>	Ē			A1	\mathbf{B}_2			A_2				В,	7	A1		'n	2		ä	5				\mathbf{B}_2		A,
	(1) (P-Phenvl (1))		$\omega_{22} = \delta(CH)$	$\mathbf{v}_{\mathbf{P}} = \mathbf{N}$	ر الله الله الله الله الله الله الله الل				60g = 60	$\omega_{25} = (CH; CD)$	$v'_6 = CH_2 Kippschw.$		$\omega_{13} = \gamma(CH; CD)$	Z – Z			$\int_{-\infty} \omega_{\rm min} = \sqrt{\rm (CH+CD)}$	$\int dz = \int dz = $	$\int \omega_{10} = \omega_{\mathbf{X}}$	<pre>f (P-Phenyl(2))</pre>	ر میں – ۳	ک ²²⁸ – ۲		ب ب	ý w23 – w	8 PNN(?)	L (D-Dhenvel)	(ICHAN I- I) SEA 5	$\omega_{29} = \gamma_{\mathbf{X}_3} \Gamma_{\mathbf{X}}$		$\omega_{11} = \omega_{\mathbf{X}}$
				- 65							- 172			- 58												-20					
Sch	sst	Sch		sst	st	Sch		Sch	8	\mathbf{Sch}	st		SS	st			st		st	st	8		s	ដ		sst	sst	sst			8
1070	1065	1057		986	835	831		1012	949	823	729		563	789			544		692	681	555		631	590		536	497	486			423
				-55							-172			- 50												20					
st	sst	Sch		st	st	Sch	Sch	Sch	E	Sch	E	s	SS	Sch	SS	SS	st		st	st	E		s	8	E	sst	sst	sst			E
1077	1065	1052		966	835	831	828	1012	949	823	729	872	563	19T	832	822	544		692	681	555		631	591	589	536	497	486			423
				37										-14																	
Sch	sst	Sch		sst	st	Sch	Sch		Ħ	Sch	st	s	SS	E			st		st	st	Sch	E	s	E		sst	sst				s
1066	1060	1051		1016	834	833	828		949	823	006	866	563	843			544		692	681	556	553	631	590		532	497				427
Sch	sst	Sch		sst	st	Sch		Sch	u	Sch	st		SS	E			st		st	st	Sch	E	s	8		sst	sst				S
1070	1065	1055		1035	832	1012		1012	949	823	006		563	852			544		692	681	556	553	631	590		532	497				427
t	t	t	ц		'n					ų.	L										h		h				ĥ			h	
7 sst	8 SS1	0 sst	a S S S S S	3 sst	2 Sc				3 st	2 Sc	1 sst		3 H	7 st			4 st	6 st	5 st	6 st	0 Sc	3 st	1 Sc	¥		5 sst	5 Sci	e sst	7 s	2 Sci	s
111	110	110	107	105.	102.				66	57,	90		83	84			754	74(12:	71(70(69	68]	61		55(52	515	46	462	442

Molekülteil A: Die Triphenylphosphor-Gruppe

Die Schwingungen der Triphenylphosphor-Gruppe A sind nach Arbeiten von Whiffen⁹⁾, Steger und Stopperka¹⁰⁾, Deakon und Jones¹¹⁾ sowie Goubeau und Wenzel¹²⁾ meist leicht aus den Spektren der Phosphaketazine auszusondern. Um Unsicherheiten der Zuordnung von Schwingungen dieses Molekülteils gegenüber solchen aus B auszuschließen, wurden die kerndeuterierten Verbindungen 6b, 6d, 6f und 6g dargestellt. Neben zufälligen Koinzidenzen können anhand ihrer IR-Spektren auch Kopplungsund Resonanzphänomene leichter erkannt werden.

Die ω_i -Numerierung der aus den Phenylgruppen stammenden Absorptionen in Tab. 2 ist von Nonnenmacher¹³⁾ übernommen. Für die zusätzlich angegebene Schwingungsrasse ist die C2v-Symmetrie des monosubstituierten Ringes zugrunde gelegt worden. Entsprechend sind die Absorptionen in die Rassen A1, A2, B1, B2 unterteilt, wobei Schwingungen gleicher Rasse, beginnend mit A₁, nach fallenden Frequenzen numeriert werden. Zur besseren Übersicht sind in Tab. 3 die durch Kerndeuterierung in 6b, d, f, g auftretenden Isotopenverschiebungen für Schwingungen des Teiles A weggelassen worden. Unberücksichtigt blieb ferner, daß im Teil A drei Phenylgruppen mit (maximaler) Lokalsymmetrie C3v vorhanden sind. Unter der Annahme, daß nichtsterische Wechselwirkungen zwischen Ringen nur für stärker substituentenabhängige Schwingungen auftreten, sollten hauptsächlich bei diesen deutliche Aufspaltungen in A- und E-Schwingungsrassen gefunden werden. Tatsächlich erkennt man für die typisch substituentenempfindlichen Schwingungen ω_6 und ω_{10} , die sogenannten "P-Phenyl-Schwingungen"¹¹), aber auch für einige andere wie ω_{18} , ω_{27} , ω_{28} kurzwellig auftretende Schultern oder gar drei Banden. Wechselwirkungen von Schwingungen aus A (ω_6 , ω_8) mit solchen aus B werden im folgenden erörtert.

Molekülteil B: Die Phosphaketazin-Gruppe

Von besonderem Interesse für den Bindungszustand in Phosphaketazinen sind die Schwingungen des Molekülteiles **B**.

Abgesehen von den Kohlenstoffsubstituenten Y ist das P=N-N=C-System zunächst durch drei Abstandskoordinaten, d. h. durch die drei Bindungen P=N, N-Nund C=N charakterisiert. Wir erwarten daher drei "Valenzschwingungen", an denen diese drei Bindungen, die alle mindestens ein Stickstoffatom enthalten, wesentlich beteiligt sind. ¹⁵N-Substitution in α - und β -Position (¹⁵N^{α , β}) wie in **61** sollte mindestens bei drei Banden zu deutlichen Isotopenverschiebungen führen.

Im Bereich > 1600/cm findet man keine Isotopenverschiebungen, die kürzestwellige wird für die Bande bei 1549/cm beobachtet, welche bei ¹⁵N^β-Markierung eine Frequenzerniedrigung um 19/cm erfährt (Tab. 4: 6h und 6i). Da die Verschiebung bei Methylen-Deuterierung (6e, 6f, 6g) wegen der größeren Massenänderung noch stärker ausfällt ($\Delta v = 38$ /cm), muß es sich hier im wesentlichen um die C=N-Valenzschwingung $v_{C=N}$ handeln.

Ähnlich starke Isotopenverschiebungen werden bei ${}^{15}N^{\beta}$ -Substitution im energiereichen Teil des Spektrums nicht mehr gefunden, wohl aber für ${}^{15}N^{\alpha}$ -Substitution (**6c**, **6i**). Eine sehr intensive Bande bei 1053/cm wird durch ${}^{15}N^{\beta}$ -Substitution nur um

Nr.	х	Nα	Nβ	Y	$\nu_{C=N}$	٧P=N	$\nu_N - N$	
6a	Н	14	14	Н	1549	1053	847	
b	D				1549 0	1035 	852 + 5	
c		15			1549 0	1028 	837 	
d	D	15			1549 0	1016 37	843 4	
e				D	1511 	1012 41	799 	
f	D			D	1511 	998 55	797 50	
g	D	15		D	1511	988 65	789 58	
h			15		1530 	1049 	841 6	
i		15	15		1530 	1029 24	831 	

Tab. 4. Charakteristische Frequenzen des Phosphaketazin-Teils B (in cm⁻¹) und durch Isotopensubstitution hervorgerufene Frequenzänderungen (in cm⁻¹, bezogen auf 6a) $(C_6X_5)_3P = N^{\alpha} - N^{\beta} = CY_2$

4/cm, bei den ¹⁵N^{α}-markierten Verbindungen (**6c**, **6i**) hingegen um mindestens 24/cm verschoben (Tab. 4). Da keine höherfrequente Schwingung des Standards **6a** eine stärkere ¹⁵N^{α}-Isotopenverschiebung erleidet, muß die Bindung mit der höchsten Kraftkonstanten zum α -Stickstoff wesentlich an dieser Schwingung beteiligt sein. Wir bezeichnen die Schwingung daher als "P=N-Valenzschwingung" v_{P=N}.

Schließlich findet man noch eine dritte Absorption bei 847/cm, die sowohl bei ¹⁵N^α- als auch für ¹⁵N^β-Markierung eine deutliche Isotopenverschiebung erfährt; bei α- und β-Substitution addieren sich beide Effekte (Tab. 4: **6c**, **6h**, **6i**). Genau dieses Verhalten wird für die N-N-Schwingung (v_{N-N}) erwartet, so daß auch für die dritte, stark isotopenabhängige Absorption ihre formale Zuordnung zu einer Bindung außer Frage steht.

Für den Molekülteil **B** $P=N-N=CY_2$ sind insgesamt zwölf Schwingungen zu erwarten, von denen hier die drei aufschlußreichsten durch ¹⁵N-Markierung sicher zuzuordnen waren. Weitere fünf Schwingungen, an welchen die Methylen-Wasserstoffatome wesentlich beteiligt sind, lassen sich an Hand der Deuteromethylen-Derivate identifizieren, in deren IR-Spektren auch die C=N-Schwingung deutlich beeinflußt wird (Tab. 4: **6e**, **6f**, **6g**). In Tab. 5 finden sich die zugeordneten Schwingungen des Molekülteiles $-N=CY_2$ den sechs Normalschwingungen des gasförmigen Formaldehyds¹⁶ gegenübergestellt.

Von den Schwingungen des Molekülteils B lassen sich so acht zuordnen. Die restlichen vier Schwingungen, bei denen es sich um Deformationen in und aus der Molekülebene handelt, müßten im energieärmeren Teil des Spektrums liegen. Die hier auf-

¹⁶⁾ G. Herzberg, Molecular Spectra and Molecular Structure II, D. van Nostrand Company, Inc. Princeton, New Yersey, Toronto, New York, London, 10. Aufl. 1962.

findbaren Isotopeneffekte, z. B. für die Banden bei 556 und 462/cm, sind kein hinreichender Anhaltspunkt für eine Zuordnung zu den gesuchten Deformationsschwingungen.

Tab. 5. Vergleich der Normalschwingungen von gasförmigem Formaldehyd $^{16)}$ mit den Schwingungen des Molekülteils N=CY₂

Bezeichnung	$H_2C = O$	$H_2C = N -$	$D_2C = O$	$D_2C = N -$
ν'ı	2780		2056	2125
v'2	1744	1548	1700	1511 ($\bigtriangleup \nu_{C=X}$)
٧'3	1503	1383	1106	1004
V'4	2874	2881	2160	2276
v′5	1280	1184	990	901
۷′ ₆	1167	901	938	729

C. Diskussion der Schwingungen des Phosphaketazin-Systems

Während die Schwingungen der Triphenylphosphor-Gruppe A kaum von denen anderer analoger Phosphorverbindungen abweichen, zeigt schon die relativ langwellige Lage der drei charakteristischen Schwingungen (Tab. 4) des Phosphaketazin-Teils **B**, daß hier gegenüber isolierten P=N-3.17-19) und N=C-Systemen 20) eine erhebliche Wechselwirkung auftritt. Einer Diskussion seien zunächst die durch ¹⁵N-Markierung, Kern- oder Methylengruppen-Deuterierung hervorgerufenen Veränderungen, die sich nicht durch eine isolierte Betrachtung einzelner Bindungen verstehen lassen, vorangestellt (vgl. Tab. 4):

(1) Methylen-Deuterierung hat einen stärkeren Einfluß auf die "P=N-Frequenz" als α - oder β -¹⁵N-Markierung. Von diesen erniedrigt ¹⁵N^{α}-Substitution nur die P=N-, nicht aber die C=N-Frequenz, ¹⁵N^{β}-Substitution dagegen die C=N- und geringfügig auch die P=N-Frequenz.

(2) Durch ¹⁵N^{α}-Markierung wird in **6c** und **6i** nicht nur die "P=N-Frequenz" (Tab. 4), sondern auch die "in-plane" Phenyl-Deformationsschwingung ω_8 langwellig verschoben.

(3) Der Einfluß der ¹⁵N^{α}-Markierung auf die "P=N-Frequenz" ist bei CD₂-Verbindungen (**6f/6g**) deutlich kleiner, als bei den entsprechenden CH₂-Verbindungen (**6a/6c**, **6i**).

(4) Die "P=N-Frequenz" wird durch Perdeuterierung der Phenylkerne um 18/cm langwellig verschoben. Die substituentenabhängige Phenylschwingung ω_6 (P-Phenyl(1)) liegt in diesen deuterierten Derivaten deutlich näher an der P=N-Frequenz.

(5) Die "N-N-Frequenz" wird gleichfalls durch Methylen-Deuterierung erheblich stärker beeinflußt als durch ¹⁵N-Substitution.

¹⁷⁾ H. Götz und H. Juds, Liebigs Ann. Chem. 698, 14 (1966).

¹⁸⁾ E. I. Matrosow, Zh. Strukt. Khim. 7 (5), 708 (1966).

¹⁹⁾ G. Singh und H. Zimmer, Organomet. Chem. Rev. 1967, 279.

²⁰⁾ L. J. Bellamy, The Infrared Spectra of Complex Molecules, London: Methuen & Co., New York: John Wiley and Sons, Inc. 1958.

Die vorstehenden Befunde, die an Hand der Daten in Tab. 4 leicht zu überblicken sind, lassen für die untersuchten *P*-Triphenyl-*N*-methylen-phosphaketazine folgende Schlüsse zu:

Die C=N-Valenzschwingung hat im wesentlichen ihren Gruppenfrequenz-Charakter bewahrt. Sie wird nur durch Methylen-Deuterierung ($\Delta v = 38$ /cm, **6e**, **6f**) und $^{15}N^{\beta}$ -Substitution ($\Delta v = 19$ /cm, **6h**, **6i**) beeinflußt. Ein solches Verhalten ist für die Bindung mit der größten Kraftkonstanten im P=N-N=C-System auch zu erwarten.

Der sogenannten "P=N-Valenzfrequenz" käme nur aufgrund der ¹⁵N-lsotopeneffekte ($\Delta v_N \alpha = -25$ /cm, $\Delta v_N \beta = -4$ /cm) Gruppenfrequenz-Charakter zu. Nach Befund (1) wäre sie jedoch besser als "symmetrische" Schwingung des Teilsystems **B** mit erheblicher Amplitude der Methylen-Gruppe oder mit einem Anteil an der Deformationsschwingung v'₅ zu beschreiben:

Die beobachtete Frequenzerniedrigung bei 15N^{α}-Markierung ist dabei nach Befund (2) zu korrigieren, da zwischen der lagekonstanten "in plane"-Phenyl-Deformationsschwingung ω_8 aus dem Teilsystem A und der verschobenen "P=N-Frequenz" Resonanz auftritt (Tab. 2: 6a, 6c, 6i, $\Delta \nu(\omega_8) = 7 - 10/\text{cm}$). Der "wahre" Wert des 15 N°-Isotopeneffektes sollte daher (25 + 7) \sim 32/cm betragen. In analoger Weise ließe sich in der CD₂-Verbindung 6f die energetische Nähe der v'_3 -Schwingung und der P = N-Frequenz" ($v'_3 = 1004$, $v_{P-N} = 988/cm$) als Resonanzaufspaltung interpretieren und damit zugleich erklären, weshalb man bei 15Nª-Substitution in 6g nurmehr eine Verschiebung von 10/cm beobachtet (Befund (3)). Da v'_3 jedoch nur als Schulter auftritt, ist der Resonanzfall hier nicht eindeutig nachweisbar. Auch die langwellige Verschiebung der "P=N-Frequenz" in den Perdeuterophenyl-Derivaten läßt sich durch die energetische Annäherung der "P-Phenylschwingung" ω_6 an die "P=N-Frequenz" infolge der Deuterierung verstehen. Deutlicher wird diese Wechselwirkung zwischen "benachbarten" Schwingungen im P-Triphenyl-N-cyclopentadienyliden-phosphaketazin (d)²¹⁾. Für die N-N-Schwingung wäre nach den beobachteten ¹⁵N-Isotopeneffekten wiederum ein Gruppenfrequenz-Charakter zu diskutieren. Der dominierende Einfluß der Methylen-Deuterierung (Tab. 4: $\Delta \nu \sim 50/cm$) zeigt jedoch, daß es sich um eine Schwingung des Gesamtsystems mit großer Amplitude der CY2-Gruppe oder um eine Mischung mit Y-anteiligen Schwingungen (v'6?) handelt. Die Frequenzerhöhung bei Kerndeuterierung (6b, $\Delta v = +5/cm$) kann bedeuten, daß das N-N-System gegen die schwerere P-Triphenylgruppe schwingt.

Der Einfluß der ¹⁵N- und D-Isotopensubstitution auf die Lage der drei charakteristischen Schwingungen des Phosphaketazin-Molekülteiles **B** ist somit erklärbar. Offen bleibt jedoch die Frage, weshalb sowohl die "P=N-" als auch die C=N-Frequenz so tief liegen, ohne daß die "N-N-Frequenz" nennenswert kurzwellig verschoben wird. Tatsächlich ist der Anteil der polaren Grenzstruktur $\stackrel{\oplus}{P}$ -N=N- $\stackrel{\odot}{C}$

²¹⁾ H. Bock, M. Schnöller und H. tom Dieck, in Vorbereitung.

Chemische Berichte Jahrg. 102

(b) wohl geringer, als man aufgrund der langwellig verschobenen "P=N"- und N=C-Valenzfrequenzen annehmen möchte. Um aus den 1R-Daten Informationen über den Bindungszustand im P=N-N=C-System zu erhalten, müssen die gefundenen Frequenzen daher zunächst "korrigiert" werden:

Die C=N-Frequenz wird bei Methylen-Deuterierung um etwa 40/cm langwellig verschoben. Berücksichtigt man dementsprechend die beiden Wasserstoffatome der CH₂-Gruppe in **6a**, so läge die C=N-Frequenz für große und nicht mitschwingende Massen Y einer CY₂-Gruppe bei etwa (1550 + 40) ~1590/cm, d. h. nur etwa 40/cm unter der Frequenz isolierter C=N-Doppelbindungen. Eine solche Frequenzerniedrigung könnte wohl auch durch einen induktiv schiebenden Substituenten bewirkt werden.

In ähnlicher Weise ist auch die "P=N-Frequenz" zu korrigieren. Methylen-Deuterierung führt hier zu einer mittleren Erniedrigung von etwa 35/cm. Ein Phosphaketazin $P = N - N = CY_2$ ohne Substituenten Y oder mit solchen großer Masse sollte demnach eine "P=N-Frequenz" von (1053 + 35) \sim 1090/cm aufweisen. Übereinstimmend mit dieser Abschätzung findet man die "P=N-Frequenz" im Isopropyliden-phosphaketazin $(C_6H_5)_3P = N - N = C(CH_3)_2$ bei 1084/cm und in der entsprechenden Cyclopentadienyliden-Verbindung bei 1104/cm²¹). Da die unbeeinflußte P=N-Frequenz bei etwa 1200/cm anzusetzen ist³⁾, scheint in den Phosphaketazinen der P=N-Doppelbindungsanteil durch konjugativen Elektronenabzug vermindert. Die zunächst durch Anhäufung von nichtbindenden Elektronen am α -Stickstoff bedingte Destabilisierung der N-N-Bindung, deren Extremfall etwa im Hexaphenyldiphosphazen $(C_6H_5)_3P = N - N = P(C_6H_5)_3$ von Appel und Schöllhorn²² vorliegt, wird durch die konjugative Weiterleitung von Elektronen zum Methylen-Kohlenstoff kaum überkompensiert, so daß die N-N-Schwingung noch im Bereich normaler N-N-Einfachbindungen liegt. Berücksichtigt man, wie bei den beiden anderen charakteristischen Frequenzen, den Einfluß der Methylen-Deuterierung ($\Delta v_{N-N} = 48/cm$), kommt man für nicht starr mitschwingende Substituenten Y zu einer korrigierten "N-N-Frequenz" von (847 + 48) \sim 900/cm.

Das P=N-N=C-Bindungssystem des *P*-Triphenyl-*N*-methylen-phosphaketazins ist nach den diskutierten Befunden daher sinnvoll so zu beschreiben, daß die Elektronendichte am Azinkohlenstoff auf Kosten bindender Elektronen des P=N-Systems erhöht wird. Die P=N-Bindung wird infolge Elektronenmangels, die N=C-Bindung infolge überschüssiger negativer Ladungen geschwächt, während die N-N-Bindung von dieser Elektronendelokalisierung kaum profitiert.

Der Deutschen Forschungsgemeinschaft danken wir für die Förderung der vorliegenden Arbeit, Herrn H. Huber (Institut für Organische Chemie der Universität München) für die Aufnahme der IR-Spektren.

²²⁾ R. Appel und R. Schöllhorn, Angew. Chem. 76, 991 (1964).

Beschreibung der Versuche

Die IR-Spektren wurden mit einem Perkin-Elmer Gitterspektrographen 125 aufgenommen (1.40 mg Substanz/150 mg KBr; 10 Min. Preßdauer bei 150 at).

Darstellung der ¹⁵N- und D-markierten p-Toluolsulfonsäureamide

N-Trideuteromethyl-p-toluolsulfonsäureamid (2): Eine Lösung von 0.5 g *Trideuteromethyl-ammoniumchlorid* Merck (7.1 mMol) in 4 ccm Wasser wird in den Kolben der von *Clusius* und *Effenberger*²³⁾ beschriebenen Apparatur eingefüllt, während ein 50-ccm-Schlenk-Kolben als Vorlage 0.68 g (3.6 mMol) *p-Toluolsulfochlorid* in 20 ccm Äther enthält. Nach Abkühlen mit Trockeneis/Aceton wird auf 400 Torr evakuiert und anschließend die wäßr. Lösung vorsichtig zum Sieden erhitzt. Das entwickelte Trideuteromethylamin reagiert mit dem vorgelegten Sulfochlorid. Nach 12 Stdn. Stehenlassen bei 20° gießt man die Ätherlösung ab und wäscht das ausgefallene Trideuteroammoniumchlorid zweimal mit wasserfreiem Äther. Eindampfen der Ätherauszüge liefert 595 mg 2 (92%), die ohne weitere Reinigung zur Nitrosierung eingesetzt werden können.

N-Methyl-[15N]-p-toluolsulfonsäureamid (3)

a) $[^{15}N]$ -p-Toluolsulfonsäureamid: Nach einer abgeänderten Vorschrift²⁴) wird eine Mischung von 300 mg $[^{15}N]$ Ammoniumchlorid (5.5 mMol), 2.05 g p-Toluolsulfochlorid (10.75 mMol) und 2.75 g Kaliumhydrogencarbonat (27.5 mMol) in 25 ccm Wasser langsam auf 60° erwärmt. Nach Beendigung der CO₂-Entwicklung kocht man weitere 2 Stdn. bei 125° unter Rückfluß. Das nach 12 Stdn. in farblosen Flocken ausgefallene Amid wird abgenutscht, mit 3 ccm kaltem Wasser gewaschen und über Phosphorpentoxid i. Vak. getrocknet. Ausb. 680 mg (73%, bezogen auf [¹⁵N]Ammoniumchlorid).

b) 3: 680 mg $[1^{15}N]$ -*p*-Toluolsulfonsäureamid (4.05 mMol) werden mit 755 mg Natriumcarbonat (7.13 mMol) und 662 mg *p*-Toluolsulfonsäure-methylester (3.56 mMol) in 2.5 ccm Wasser 2 Stdn. auf 125° erhitzt. Nach Abkühlen versetzt man vorsichtig mit 1 ccm verd. Salzsäure und gibt anschließend 0.5 ccm halbkonz. Salzsäure zu. Nach Verdünnen mit 3 ccm Wasser wird mit verd. Salzsäure auf pH 7 gebracht. Mehrstdg. Stehenlassen bei 0° liefert farblose Flocken, die abgenutscht und mit 0.5 ccm verd. Salzsäure und 2 ccm kaltem Wasser gewaschen werden. Nach Trocknen i. Vak. über Kaliumhydroxid Ausb. 539 mg (72%, bezogen auf $[1^{5}N]$ -*p*-Toluolsulfonsäureamid). Das erhaltene **3** wurde zur Nitrosierung eingesetzt.

Allgemeine Arbeitsvorschrift zur Nitrosierung der N-Methyl-p-toluolsulfonsäureamide

Zu einer auf 5° gekühlten Suspension von 666 mg *N-Methyl-p-toluolsulfonsäureamid* (3.6 mMol) in 1.5 ccm Eisessig und 0.5 ccm 2 *n* Essigsäure wird unter Rühren mit einem Magnetrührer eine Lösung von 250 mg /¹⁵*N*]*Natriumnitrit* (3.65 mMol) in 1 ccm Wasser getropft (1 Tropfen/5 Min.). Nach 30 Min. Stehenlassen bei 20° versetzt man mit 1 ccm Wasser, nutscht den gelbgrünen Niederschlag mit einer Mikronutsche ab und trocknet nach zweimaligem Aufschlämmen mit Wasser im Exsikkator über Kaliumhydroxid, Ausb. 660 mg (85.8%, Schmp. 58-61°).

Die so dargestellten Verbindungen 4a, 4c, 4e, 4g-i konnten ohne weitere Reinigung zur Synthese verwendet werden.

²³⁾ K. Clusius und E. Effenberger, Helv. chim. Acta 38, 1834 (1955).

²⁴⁾ Methoden der organ. Chemie (Houben-Weyl), 4. Aufl., Bd. XI/I, S. 231, Georg Thieme Verlag, Stuttgart 1957.

Allgemeine Arbeitsvorschrift zur Darstellung der isotopenmarkierten P-Triphenyl-N-methylenphosphaketazine

In der in Abbild. 1 gezeigten Apparatur werden 28 mg Kaliumhydroxid (0.5 mMol) in 0.05 ccm Wasser, 0.2 ccm Äther und 0.2 ccm Carbitol mit einem teflonbeschichteten Magnetrührer gerührt und aus dem Vorratsgefäß rasch portionsweise 100 mg N-{ $\{1^{5}N\}$ -Nitroso}-N-methyl-p-toluolsulfonsäureamid (0.47 mMol) in 1.5 ccm Äther zugegeben. Nach 1 Min. wird das Reaktionskölbchen mit einem Heißluftgebläse erwärmt und das entwickelte Diazomethan im Ätherdampf in die auf -20° gekühlte Vorlage destilliert. Weitere 1.5 ccm Äther, die langsam durch das Vorratsgefäß zutropfen, vertreiben das Diazomethan vollständig. Nach Trocknen über einem Kaliumhydroxidplätzchen werden in der äther. Diazomethanlösung in dem ebenfalls abgebildeten Zweischenkelgefäß unter Stickstoff 90 mg Triphenylphosphin (0.34 mMol) gelöst. Nach 12 Stdn. dekantiert man von dem eventuell ausgeflockten amorphen Niederschlag, indem man die Lösung durch Schwenken des Schlenk-Gefäßes in den anderen Schenkel überführt. Hier scheidet sich nach kurzer Zeit das Methylen-phosphaketazin in farblosen Kristallen ab. Die Ausb. bis 80% mit Schmp. 139 – 141° unter langsamer Zersetzung.

 $C_{19}H_{17}N^{15}NP$ (305.3) Ber. C 74.74 H 5.61 N 9.50 Gef. C 74.84 H 5.64 N 9.35

Die übrigen Methylen-phosphaketazine wurden durch Vergleich der Schwingungsspektren charakterisiert.

[438/68]